
mcpartools Documentation
Release 0.6.2.post0.dev

Author

Aug 14, 2023

Contents

1 Getting Started with mcpartools 3
1.1 Introduction . 3
1.2 Quick installation guide . 3
1.3 Using generatemc command . 4
1.4 Features . 4
1.5 Support . 4
1.6 License . 5

2 User’s Guide 7
2.1 Directory layout and basic workflow . 7
2.2 Advanced options . 8

3 Detailed Installation Guide 11
3.1 Prerequisites - python interpreter . 11
3.2 Single file distribution . 13
3.3 Prerequisites - pip tool . 13
3.4 pip package installation . 14

4 Developer documentation 17
4.1 Contributing . 17
4.2 Technical documentation . 20
4.3 Badges and links . 20
4.4 Credits . 20

i

ii

mcpartools Documentation, Release 0.6.2.post0.dev

Contents:

Contents 1

mcpartools Documentation, Release 0.6.2.post0.dev

2 Contents

CHAPTER 1

Getting Started with mcpartools

Brief overview of mcpartools and how to install it.

1.1 Introduction

mcpartools is a software simplifying time consuming simulation of particle transport using Monte Carlo codes (Fluka,
SHIELDHIT12A). We assume user has access to a computing cluster with batch processing software installed (i.e.
slurm, torque) and wants to parallelize simulation by running it simultaneously on many computing nodes. mcpartools
simplifies this process by generating necessary directory structures and scripts for starting calculations and collecting
the results.

mcpartools provides a command line application called generatemc which works under Linux operating system
(interpreter of Python programming language has to be also installed). No programming knowledge is required from
user, but basic skills in working with terminal console are needed.

1.2 Quick installation guide

First be sure to have Python framework installed, then type:

pip install mcpartools

This command will automatically download and install mcpartools for all users in your system. In case you don’t
have administrator rights, add --user flag to pip command. In this situation converter will be probably installed in
~/.local/bin directory.

For more detailed instruction, see installation guide.

3

INSTALL.rst

mcpartools Documentation, Release 0.6.2.post0.dev

1.3 Using generatemc command

Let us start with simple simulation of 10^6 of particles using Fluka MC code. Such simulation would probably take
few hours when running on single CPU. It can be however faster, when you submit 100 parallel jobs, each running
simulation of 10^4 particles. We assume that:

• you are logged in to the computing cluster, all commands are executed there

• mcpartools is installed on the cluster

• cluster has working slurm batch job software

• Fluka in installed on the cluster and rfluka command is available

• an example Fluka input file is located in $HOME/sample.inp

First step is to generate necessary scripts and directory structure. To accomplish this, type in terminal:

generatemc --jobs_no 100 --particle_no 100000 $HOME/sample.inp

New directory with a name similar to $HOME/run_20160913_084601 will be created. To start simulation, we
call appropriate script:

$HOME/run_20160913_084601/submit.sh

After the simulation is done (it may take few minutes), run following script to gather the results in a single directory:

$HOME/run_20160913_084601/collect.sh

Output files from 100 parallel jobs will be saved in $HOME/run_20160913_084601/output directory, ready
to be analyzed or merged. In case the output is not satisfactory, new workspace can be created and whole process
repeated from scratch.

More documentation dealing with advanced options can be found here https://mcpartools.readthedocs.io/

1.4 Features

• user-friendly parallelism of particle transport simulations

• output collected in single directory

• workspace with logs and input files saved for bookkeeping

• Monte-Carlo codes support: SHIELD-HIT12A and Fluka

• cluster batch software support: slurm

• python2 and python3 compatible

• no external libraries needed

1.5 Support

Bugs can be submitted through the issue tracker. Besides the example directory, cookbook recipes are encouraged to
be posted on the wiki page

4 Chapter 1. Getting Started with mcpartools

https://mcpartools.readthedocs.io/
https://github.com/DataMedSci/mcpartools
https://github.com/DataMedSci/mcpartools/wiki

mcpartools Documentation, Release 0.6.2.post0.dev

1.6 License

mcpartools is licensed under GPLv3.

1.6. License 5

https://github.com/DataMedSci/mcpartools/blob/master/source/LICENSE

mcpartools Documentation, Release 0.6.2.post0.dev

6 Chapter 1. Getting Started with mcpartools

CHAPTER 2

User’s Guide

2.1 Directory layout and basic workflow

generatemc will create following directory structure for each run:

run_20170219_122904 # main directory, new one is created for each
→˓generatemc call

collect.sh # call to copy output files to output directory
input # reference directory with copy of input files

sample_fluka.inp # non-modified copy of original Fluka input files
submit.sh # call to submit jobs to the cluster
workspace # workspace used to store modified input files and

→˓temporary storage for output
main_run.sh # this script will be called by batch system and

→˓redirect the execution to specific worker
job_0001 # working directory of worker no 1

sample_fluka.inp # copy of input file, with adapted RNG seed and
→˓output file path

run.sh # run script executed by worker no 1
job_0002

sample_fluka.inp
run.sh

job_0003
sample_fluka.inp
run.sh

After executing submit.sh script, output files will be created in the workspace directory. Each parallel job will store its
output in separate directory:

run_20170219_122904
collect.sh
input

sample_fluka.inp
submit.sh

(continues on next page)

7

mcpartools Documentation, Release 0.6.2.post0.dev

(continued from previous page)

workspace
main_run.sh
job_0001

sample_fluka.inp
run.sh
TODO # TODO

job_0002
sample_fluka.inp
run.sh
TODO # TODO

job_0003
sample_fluka.inp
run.sh
TODO # TODO

In order to collect all files in a single place, run collect.sh script. This will result in following new files:

run_20170219_122904
collect.sh
input

sample_fluka.inp
submit.sh
output # TODO

TODO # TODO
workspace

main_run.sh
job_0001

sample_fluka.inp
run.sh

job_0002
sample_fluka.inp
run.sh

job_0003
sample_fluka.inp
run.sh

2.2 Advanced options

There are several advanced options in the generator, customising the workflow.

After executing generatemc command a directory will be created (i.e. run_20170219_122904), by default in the same
location as the input configuration files. In order to change the location of generated directory, use the –workspace
option. For example after typing:

generatemc.py -p 10000 -j 20 tests/res/sample_fluka.inp

A directory tests/res/run_20170717_195410 will be created. Now providing a workspace option:

generatemc.py -p 10000 -j 20 tests/res/sample_fluka.inp --workspace mydir

will result in new directory mydir/run_20170717_195557

Another useful option is the ability to provide additional options for scheduler and for Monte-Carlo binary. The first
one can be used i.e. to specify directly the walltime for job execution:

8 Chapter 2. User’s Guide

mcpartools Documentation, Release 0.6.2.post0.dev

generatemc.py -p 10000 -j 20 tests/res/sample_fluka.inp --scheduler_options "[--
→˓time=2:00:00]"

Note additional square brackets added to distinguish between generatemc and scheduler options.

There is also a possibility to do automatic collection of data after calculation. User can also specify desired format of
collected data:

generatemc.py -p 10000 -j 20 tests/res/sample_fluka.inp -c image

Data will be collected automatically after calculation (in this example to the images) so there is no need to run addi-
tional ./collect.sh script. Right now available options are mv, cp, image, plotdata and custom. User could also provide
his own script for collecting the data. In such case the program can be run in following way:

CUSTOM_COLLECT=usercollect.sh generatemc.py -p 10000 -j 20 tests/res/sample_fluka.inp
→˓-c custom

One could also specify additional options to Monte-Carlo binary files. For example to add an user-defined particle
source in Fluka one can use its -e option. If the flukadpm3_sobp file is not present in the PATH environmental variable,
then its location needs to be known. This may be achieved by a mechanism of creating a link to an external file. Such
links can be created by using -x switch, here we provide an example in which an external source is enabled by -e
switch and two external files are linked (sobp.dat and flukadpm3_sobp):

generatemc.py -p 10000 -j 20 tests/res/sample_fluka.inp --mc_engine_options "[-e
→˓flukadpm3_sobp]" -x ./sobp.dat ./flukadpm3_sobp

When using -x option you may also set the absolute paths to the linked files.

2.2. Advanced options 9

mcpartools Documentation, Release 0.6.2.post0.dev

10 Chapter 2. User’s Guide

CHAPTER 3

Detailed Installation Guide

Installation guide is divided in two phases: checking the prerequisites and main package installation.

mcpartools works under Linux operating system.

If you are familiar with python and pip tool, simply type following command to install the package:

$ pip install mcpartools

If your are a less advanced user, read the rest of the page.

Installation guide is divided in two phases: prerequisites (mainly Python installation) and main package installation.

There are two groups of users: administrators and regular ones. For regular users we assume that they can write files
to their home directory, but not necessary elsewhere. We assume that administrators can log in as root user, execute
commands via sudo or have some other way to create files system-wide.

We expect that mcpartools will mostly be used by regular users on computing clusters. This is the reason why
installation instruction is lengthy and detailed, explaining how to deal with lack of administrator rights.

3.1 Prerequisites - python interpreter

First we need to check if Python interpreter is installed. Try if one of following commands (printing Python version)
works:

$ python --version
$ python3 --version

At the time of writing Python language interpreter has two popular versions: 2.x (Python 2) and 3.x (Python 3)
families. Command python invokes either Python 2 or 3, while python3 can invoke only Python 3.

mcpartools supports most of the modern Python versions, mainly: 2.7, 3.2, 3.4, 3.5 and 3.6. Check if your interpreter
version is supported.

If none of python and python3 commands are present, then Python interpreter has to be installed.

11

mcpartools Documentation, Release 0.6.2.post0.dev

We suggest to use the newest version available for your Linux distribution (from 3.x family).

3.1.1 User installation

In case Python is missing and you are regular user, the best would be contact somebody with administrator rights and
ask to install Python interpreter in the system.

Installation of Python without administrator rights is however possible, but in case something goes wrong it will
require expert knowledge.

As an user you will need to download Python interpreter source code (written in C language) and compile it. For that
purpose you will need a C language compiler (i.e. gcc) and some other tools (i.e. make). These tools are usually
installed by somebody with administrator rights. Python installer might not complain about missing SSL libraries
(i.e. libssl-dev) and will compile successfully, but we recommend to install it (SSL libraries) before, to have easier
installation of pip package manager in the next steps.

When installing as user we advice to unpack downloaded source code in $HOME/tmp directory and keep it there. It
may be needed for upgrade or deinstallation purpose.

Let us install Python 2.7 into $HOME/usr/py27 directory. First let us create $HOME/tmp directory and step into it:

$ mkdir -p $HOME/tmp
$ cd $HOME/tmp

Now its time to download and unpack source code package. We show an example with 2.7.12 version, but newer one
can be problably found on https://www.python.org/downloads/source/

$ wget https://www.python.org/ftp/python/2.7.12/Python-2.7.12.tgz
$ tar -zxf Python-2.7.12.tgz
$ cd Python-2.7.12

Finally let us start compilation process (it might take couple of minutes). This process might be interrupted by some
error message. Do not hesitate to find a professional help to fix it:

$./configure --prefix=$HOME/usr/py27
$ make
$ make install

Python2.7 is now installed into $HOME/usr/py27 directory. In order to execute python interpreter, you need to provide
full path to the executable file, i.e.:

$ $HOME/usr/py27/bin/python --version

In a similar way python3.x can be installed.

3.1.2 Administrator installation

The best way is to use your package manager.

• apt-get install python3 (python 3) or apt-get install python (python 2) for Debian and
Ubuntu

• dnf install python3 (python 3) or dnf install python (python 2) for Fedora

• yum install python3 (python 3) or yum install python (python 2) for CentOS and SLC

12 Chapter 3. Detailed Installation Guide

https://www.python.org/downloads/source/

mcpartools Documentation, Release 0.6.2.post0.dev

3.2 Single file distribution

mcpartools is shipped as a single file executable. It can be downloaded from https://github.com/DataMedSci/
mcpartools/releases webpage using the web browser or via command line (here an example with 0.1.4 version is
found, newer versions should also be available):

$ wget https://github.com/DataMedSci/mcpartools/releases/download/v0.1.4/generatemc.
→˓pyz -O generatemc

After downloading the file, make sure it has executable bits set:

$ chmod ugo+x generatemc

When new version if released, replace downloaded file with newer one.

As mcpartools doesn’t have any mechanism of automatic updates, we recommend to use installation using pip tool,
described below. It makes easy upgrade and uninstallation procedure.

3.3 Prerequisites - pip tool

pip is a tool for installing and managing Python packages. It downloads the packages from central Internet repository
and installs them in a similar way as apps are downloaded on your smartphone by Google Play or Apple Store.

Try the following commands (printing pip version):

$ pip --version
$ pip3 --version

In a similar way to python interpreter pip is a tool for Python 2 or 3, while pip3 works exclusively for Python 3. If
none of these commands are present, then pip has to be installed.

3.3.1 User installation

Follow the instruction from here https://pip.pypa.io/en/stable/installing/, mainly - download installation script using
your web browser, or by typing in the terminal:

$ wget https://bootstrap.pypa.io/get-pip.py

openssl for python2

Now use your python interpreter to execute downloaded script. It will install pip in your home directory:

$ python get-pip.py --user

Try if pip command is available by typing:

$ $HOME/.local/bin/pip --version

If this method fails you can also try to use a ensurepip approach. It works with Python versions: 2.7 (starting from
2.7.9), 3.4 and newer. To install pip, simply type:

$ python -m ensurepip

3.2. Single file distribution 13

https://github.com/DataMedSci/mcpartools/releases
https://github.com/DataMedSci/mcpartools/releases
https://pip.pypa.io/en/stable/installing/

mcpartools Documentation, Release 0.6.2.post0.dev

3.3.2 Administrator installation

Follow the package installation for your system. On some systems instructions mentioned below have to be prefixed
with sudo command.

• apt-get install python3-pip (python 3) or apt-get install python-pip (python 2) for
Debian and Ubuntu

• dnf install python3-pip (python 3) or dnf install python-pip (python 2) for Fedora

• yum install python3-pip (python 3) or yum install python-pip (python 2) for CentOS and
SLC

3.4 pip package installation

Now it is time to install mcpartools package. It consists of executable file called generatemc and bunch of necessary
code files.

3.4.1 User installation

User installation will put the mcpartools under hidden directory $HOME/.local.

To install the package, type in the terminal:

$ pip install mcpartools --user

If pip command is missing on your system, replace pip with pip3 in abovementioned instruction.

To upgrade the mcpartools to newer version, simply type:

$ pip install --upgrade mcpartools --user

To completely remove mcpartools from your system, use following command:

$ pip uninstall mcpartools

In most of modern systems all executables found in $HOME/.local/bin directory (generatemc executable will be saved
there) can be called like normal Linux commands (i.e. ls, cd). It means that after installation you should be able to
simply type in terminal: generatemc to use this package

$ generatemc --help

If this is not the case, please prefix the command with $HOME/.local/bin and call it in the following way:

$ $HOME/.local/bin/generatemc --help

3.4.2 Administrator installation

Administrator installation is very simple, but requires to save some files in system-wide directories (i.e. /usr). On
some systems commands mentioned below have to be prefixed with sudo command:

$ pip install mcpartools

To upgrade the mcpartools to newer version, simply type:

14 Chapter 3. Detailed Installation Guide

mcpartools Documentation, Release 0.6.2.post0.dev

$ pip install --upgrade mcpartools

To completely remove mcpartools from your system, use following command:

$ pip uninstall mcpartools

Now generatemc script should be installed for all users and can be invoked by typing:

$ generatemc --help

3.4. pip package installation 15

mcpartools Documentation, Release 0.6.2.post0.dev

16 Chapter 3. Detailed Installation Guide

CHAPTER 4

Developer documentation

4.1 Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

4.1.1 Types of Contributions

Report Bugs

Report bugs at https://github.com/DataMedSci/mcpartools/issues.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

Fix Bugs or Implement Features

Look through the GitHub issues for bugs or features. Anything tagged with “bug” or “feature” is open to whoever
wants to implement it.

Write Documentation

mcpartools could always use more documentation, whether as part of the official mcpartools docs, in docstrings, or
even on the web in blog posts, articles, and such.

17

https://github.com/DataMedSci/mcpartools/issues

mcpartools Documentation, Release 0.6.2.post0.dev

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/DataMedSci/mcpartools/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

4.1.2 Get Started for GIT-aware developers

Ready to contribute? Here’s how to set up mcpartools for local development. We assume you are familiar with GIT
source control system. If not you will other instruction at the end of this page.

1. Fork the mcpartools repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/mcpartools.git

3. If you are not familiar with GIT, proceed to step 5, otherwise create a branch for local development:

$ cd mcpartools
$ git checkout -b feature/issue_number-name_of_your_bugfix_or_feature

4. Now you can make your changes locally.

As the software is prepared to be shipped as pip package, some modifications of PYTHONPATH variables are needed
to run the code. Let us assume you are now in the same directory as setup.py file.

The standard way to execute Python scripts WILL NOT WORK:

$ python mcpartools/generatemc.py --version
Traceback (most recent call last):

File "mcpartools/generatemc.py", line 5, in <module>
from mcpartools.generator import Generator

ImportError: No module named mcpartools.generator

To have the code working, two things are needed:

• installation of versioneer package (needed to set proper version number)

• adjustment of PYTHONPATH variable.

First let us install versioneer package and generate necessary files:

$ pip install versioneer
$ versioneer install

Now code can be run by typing:

$ PYTHONPATH=. python mcpartools/generatemc.py --version
0.1.3.post.dev2

5. Make local changes to fix the bug or to implement a feature.

6. When you’re done making changes, check that your changes comply with PEP8 code quality standars (flake8
tests) and test against other Python versions with tox:

18 Chapter 4. Developer documentation

https://github.com/DataMedSci/mcpartools/issues

mcpartools Documentation, Release 0.6.2.post0.dev

$ flake8 mcpartools tests
$ tox

To get flake8 and tox, just pip install them.

7. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."

8. Repeat points 4-6 until the work is done. Now its time to push the changes to remote repository:

$ git push origin feature/issue_number-name_of_your_bugfix_or_feature

9. Submit a pull request through the GitHub website to the master branch of git@github.com:DataMedSci/
mcpartools.git repository.

10. Check the status of automatic tests ran by Travis system.

You can find them on the pull request webpage https://travis-ci.org/DataMedSci/mcpartools/pull_requests. In case
some of the tests fails, fix the problem. Then commit and push your changes (steps 5-8).

4.1.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and add the feature to the list in README.rst.

3. The pull request should work for Python 2.7, 3.2, 3.4, 3.5 and 3.6. Check https://travis-ci.org/DataMedSci/
mcpartools/pull_requests and make sure that the tests pass for all supported Python versions.

4.1.4 Get Started for non-GIT developers

1. Fetch the code from remote GIT repository to your local directory:

$ git clone git@github.com:DataMedSci/mcpartools.git

2. Follow steps 4-6 from the instruction for GIT-aware developers. Install versioneer:

$ pip install versioneer
$ versioneer install

To run code locally, prefix usual calls with PYTHONPATH=.:

$ PYTHONPATH=. python mcpartools/generatemc.py --version
0.1.3.post.dev2

Make your changes and check that they comply with PEP8 code quality standards (flake8 tests) and test against other
Python versions with tox:

$ flake8 mcpartools tests
$ tox

3. Compress your working directory and send it to us by email (see authors), describing your changes.

4.1. Contributing 19

https://travis-ci.org/DataMedSci/mcpartools/pull_requests
https://travis-ci.org/DataMedSci/mcpartools/pull_requests
https://travis-ci.org/DataMedSci/mcpartools/pull_requests
AUTHORS.rst

mcpartools Documentation, Release 0.6.2.post0.dev

4.1.5 Tips

To run full tests type:

$ tox

To run only a single test type:

$ PYTHONPATH=. python tests/test_file_to_run.py

4.2 Technical documentation

TODO

4.3 Badges and links

docs
tests
package

4.4 Credits

4.4.1 Development

• Leszek Grzanka - IFJ-PAN, Poland <leszek.grzanka@gmail.com>

• ant6

4.4.2 Contributors

None yet. Why not be the first?

Indices and tables

• genindex

• modindex

• search

20 Chapter 4. Developer documentation

https://pypi.python.org/pypi/mcpartools
https://travis-ci.org/DataMedSci/mcpartools
https://readthedocs.org/projects/mcpartools/?badge=latest
https://readthedocs.org/projects/mcpartools
https://pypi.python.org/pypi/mcpartools
https://pypi.python.org/pypi/mcpartools
https://pypi.python.org/pypi/mcpartools
https://pypi.python.org/pypi/mcpartools
https://pypi.python.org/pypi/mcpartools
mailto:leszek.grzanka@gmail.com

	Getting Started with mcpartools
	Introduction
	Quick installation guide
	Using generatemc command
	Features
	Support
	License

	User’s Guide
	Directory layout and basic workflow
	Advanced options

	Detailed Installation Guide
	Prerequisites - python interpreter
	Single file distribution
	Prerequisites - pip tool
	pip package installation

	Developer documentation
	Contributing
	Technical documentation
	Badges and links
	Credits

